Introduction to Qualitative Coding with nCoder

Amanda Siebert-Evenstone, Ph.D. alevenstone@wisc.edu

Seung B. Lee, Ph.D. seung.lee@pepperdine.edu Brendan Eagan, Ph.D. beagan@wisc.edu

PEPPERDINE

Categories of Spoons

https://go.wisc.edu/0nxl70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Storytelling

Storytelling

What is our systematic explanation?

Inductive Reasoning vs Deductive Reasoning

Top-Down

(aka a priori, theoretical, deductive)

Start with theory Synonyms or Word Associations Existing coding schemes Top-Down (aka a priori, theoretical, deductive)

Start with theory Synonyms or Word Associations Existing coding schemes Bottom-Up

(aka Grounded theory, emergent coding, inductive)

N-grams TFIDF Topic Models Word Counter or TextRazor Top-Down (aka a priori, theoretical, deductive)

Start with theory Synonyms or Word Associations Existing coding schemes Bottom-Up

(aka Grounded theory, emergent coding, inductive)

N-grams TFIDF Topic Models Word Counter or TextRazor

*Actually Reading your Data

SIEBERT-EVENSTONE'S MAXIM

WHEN IN DOUBT, **READ YOUR DATA.**

Imagine that you have a special instrument that allows you to see what makes up odor.

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose.

What is this about?

Imagine that you have a special instrument that allows you to see what makes up odor.

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose.

What is this about?

Imagine that you have a special instrument that allows you to see what makes up odor.

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose.

What is this about?

Science Drawing Modeling Hypothesizing "imagine" -in vivo code

- Identify common theories or ideas about the topic 1.
- Read and get to know the data 1

Quoted text from Peter A'Hearn

Top Keyword Density	
Top 10	Exclude grammar words ON
1 Word 2 Words 3 Words	^
1. data	80 (1.5%)
2. learning	51 (0.9%)
3. researchers	36 (0.7%)
4. codes	35 (0.7%)
5. quantitative	33 (0.6%)
6. qualitative	33 (0.6%)
7. how	30 (0.6%)
8. big	29 (0.5%)
9. analysis	28 (0.5%)
10. deep	25 (0.5%) f

1. Identify common theories or ideas about the topic

- 1. Read and get to know the data
- 2. Describe each line

How do you study / what is the best way for you to study?	Description
It depends on what I'm trying to learn	
Quizlet	
Flashcards, highlight notes	
It depends on the subject	
Have someone quiz me on the material	
I like using the Quizlet when I need note memorization and vocabulary. For more complex topics, I always do well reading from a textbook and taking handwritten notes as well as completing or working through practice problems.	

- 1. Identify common theories or ideas about the topic
- 1. Read and get to know the data
- 2. Describe each line
- 3. Identify ideas or codes (quizzing, context-based, processing info)

- 1. Identify common theories or ideas about the topic
- 1. Read and get to know the data
- 2. Describe each line
- 3. Identify ideas or codes
- 4. Building wordlists (we'll get to this later)
- 5. Building categories of codes

What should I code?

- What's interesting?
- Why is it interesting?
- Why am I interested in that? (Richards, 2009)

From Hatch 2002:

- Similarity (things happen the same way)
- Difference (they happen in predictably different ways)
- Frequency (they happen often or seldom)
- Sequence (they happen in a certain order)
- Correspondence (they happen in relation to other activities or events)
- Causation (one appears to cause another) (p.155)

(Amanda keeps a cheat sheet and multiple books of ideas to help inspire ideas)

Second (to nth) cycle of coding

- Recode the data because more accurate words and phrases were discovered for the original codes
- Merge together similar codes
- Separate codes that are too large
- Infrequent codes will be assessed for their utility (then kept or dropped)

Memos

'(A memo is) the theorizing write-up of ideas about codes and their relationships as they strike the analyst while coding... it can be a sentence, a paragraph or a few pages... it exhausts the analyst's momentary ideation based on data with perhaps a little conceptual elaboration' (Glaser, 1978: 83)

	SPRAWL	INFILL / SMART ABOWTH
Density	Lower	Higher
Activities/ services/ Goods	Disperzed regional regimes driving Conger Custicos	Clustered Trains
Browth	Greufield "urban periphery"	frownfiged Greyfield
Transport	Artos, Poorly sorted for walking or biking I transit	Multimodal Supports transit options
Connectivity	theractivical road notwork in mainy in coarrie top	Highly connected, Allow direct travel
Planning	Unplanned, liftle coordinations bew 9H of inisductions	Planned
Rubbic Space	Enghamis on Private real ms (yards, malls, goted communities, chilos)	Public Realms (Shopping streets, parks)
	Inequier Settlement disontinous, multiply centers	Vacant parcels or redevelopment
Chrillings	Low height, homogenous,	Mixed ver

Memo

Memos are ways of summarizing where you are at during your analysis and potential interpretations you may have about your data.

- Codes, categories, and their relationships
- Initial thoughts on data analysis
- pulling together incidents that appear to have commonalities
- proposals for a specific new pattern code
- when the analyst does not have a clear concept in mind but is struggling to clarify one

Role of Researcher

YOU are the data collection and analysis instrument

- You take notes and decide what topics to record
- What questions do you ask or not ask?
- What do you deem important?
- What are your implicit/explicit theories?
- What do you value?

"A DISCOURSE is a socially accepted association among ways of using language, of thinking, feeling, believing, valuing, and of acting that can be used to identify oneself as a member of a socially meaningful group... or to signal (that one is playing) a socially meaningful role." - Jim Gee

Learning is a process of Enculturation

Things that count as evidence or warrants for \underline{C} ODES

Codebooks

Names Examples Definition Performance Discussion of one or more criteria for device functionality: agility,

Metrics

payload, cost, recharge interval, and/or safety.

I thought that safety near the maximum was not very good (close to 225 - one had 218 RPN), but other than that I was fine with the safety as long as it was around 200 or lower.

Codebooks

Names

Definition

Examples

Performance Metrics Discussion of one or more criteria for device functionality: agility, payload, cost, recharge interval, and/or safety. I thought that safety near the maximum was not very good (close to 225 - one had 218 RPN), but other than that I was fine with the safety as long as it was around 200 or lower.

CODES

<u>c</u>odes

<u>Codes</u> Culturally-relevant and meaningful aspects of a <u>Discourse</u> Grip

<u>c</u>odes

Things that count as evidence or warrants for \underline{C} ODES

Percent positive agreement (>70%)

	20	40	80	160	200	400	600	800	900	1000
0.01	0.723	0.638	0.517	0.339	0.284	0.167	0.124	0.0933	0.0925	0.0877
0.05	0.46	0.292	0.179	0.11	0.0867	0.0609	0.0491	0.0377	0.0382	0.0318
0.1	0.308	0.189	0.114	0.0684	0.0608	0.0471	0.0353	0.0274	0.0273	0.0239
0.2	0.194	0.129	0.0851	0.057	0.0512	0.0329	0.0256	0.0226	0.0221	0.0206
0.3	0.169	0.116	0.0782	0.0539	0.0464	0.0316	0.0272	0.023	0.0211	0.0214
0.5	0.183	0.144	0.0976	0.0658	0.0605	0.0448	0.0318	0.0311	0.0255	0.0232

Recall (>0.65)

	20	40	80	160	200	400	600	800	900	1000
0.01	0.73	0.661	0.561	0.419	0.374	0.227	0.175	0.142	0.119	0.115
0.05	0.519	0.383	0.25	0.147	0.12	0.0734	0.0613	0.0549	0.0499	0.0441
0.1	0.396	0.271	0.15	0.0926	0.0788	0.0574	0.041	0.039	0.0354	0.0329
0.2	0.289	0.179	0.104	0.0721	0.0695	0.0428	0.0369	0.0293	0.0278	0.0268
0.3	0.228	0.141	0.101	0.0692	0.0624	0.0422	0.0348	0.0308	0.0302	0.0257
0.5	0.232	0.166	0.128	0.0882	0.0784	0.0536	0.0415	0.0374	0.0387	0.0328

Precision (>0.65)

	20	40	80	160	200	400	600	800	900	1000
0.01	0.609	0.609	0.569	0.544	0.576	0.496	0.521	0.48	0.472	0.456
0.05	0.565	0.558	0.544	0.501	0.463	0.422	0.422	0.387	0.395	0.376
0.1	0.57	0.508	0.48	0.46	0.432	0.391	0.339	0.324	0.313	0.338
0.2	0.53	0.466	0.431	0.417	0.392	0.318	0.306	0.273	0.267	0.24
0.3	0.509	0.417	0.401	0.393	0.389	0.305	0.271	0.229	0.212	0.229
0.5	0.464	0.339	0.384	0.338	0.333	0.258	0.246	0.231	0.226	0.248

F statistic (>0.65)

	20	40	80	160	200	400	600	800	900	1000
0.01	0.8	0.789	0.75	0.611	0.563	0.362	0.263	0.215	0.196	0.18
0.05	0.722	0.578	0.377	0.219	0.195	0.12	0.0962	0.0846	0.0817	0.0799
0.1	0.581	0.372	0.229	0.142	0.126	0.0912	0.0741	0.0625	0.0587	0.0545
0.2	0.4	0.253	0.166	0.121	0.103	0.0736	0.0561	0.0501	0.0544	0.0466
0.3	0.339	0.227	0.158	0.11	0.114	0.0709	0.0585	0.0521	0.0466	0.0475
0.5	0.349	0.264	0.235	0.168	0.159	0.113	0.0841	0.0728	0.0684	0.0672

Type I error rate rho,	using kappa (thresho	ld = 0.65) base rate inflation
------------------------	----------------------	--------------------------------

20 25 30 35 40 45 50 56 60 65 70 75 80 85 90 0.01 0.028 0.015 0.02 0.028 0.012 0.027 0.031 0.032 0.031 0.032 0.032 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.031 0.032 0.032 0.032 0.032 0.031 0.032 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.032 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.032 0.032 0.032 0.035 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031<																
0.01 0.028 0.015 0.02 0.028 0.018 0.025 0.03 0.029 0.028 0.031 0.027 0.031 0.032 0.032 0.05 0.024 0.027 0.034 0.029 0.035 0.032 0.035 0.032 0.035 0.032 0.035 0.032 0.035 0.032 0.035 0.035 0.034 0.035 0.1 0.03 0.033 0.035 0.033 0.035 0.037 0.035 0.035 0.034 0.037 0.035 0.034 0.037 0.035 0.034 0.037 0.035 0.034 0.037 0.035 0.036 0.037 0.035 0.036 0.037 0.035 0.036 0.037 0.036 0.035 0.035 0.036 0.037 0.036 0.037 0.036 0.035 0.035 0.036 0.037 0.036 0.037 0.036 0.035 0.036 0.037 0.036 0.036 0.035 0.036 0.035 0.036 0.035 0.036 0.037 0.036 0.035 0.035 0.036 0.035		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
0.05 0.024 0.027 0.034 0.029 0.031 0.035 0.035 0.032 0.035 0.032 0.035 0.035 0.034 0.035 0.1 0.03 0.033 0.033 0.035 0.035 0.035 0.035 0.035 0.035 0.036 0.037 0.035 0.035 0.036 0.037 0.035 0.036 0.037 0.035 0.036 0.037 0.035 0.036 0.037 0.036 0.037 0.035 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.036 0.037 0.036 0.037 0.036 0.036 0.037 0.036 0.037 0.036 0.036 0.037 0.036 0.036 0.037 0.036 0.036 0.037 0.036 0.036 0.035 0.036 0.037 0.036 0.036 0.035 0.036 0.037 0.036 0.035 0.036 0.037	0.01	0.028	0.015	0.02	0.028	0.018	0.031	0.025	0.03	0.029	0.028	0.031	0.027	0.031	0.032	0.032
0.1 0.03 0.033 0.035 0.033 0.035 0.037 0.035 0.035 0.034 0.037 0.035 0.034 0.037 0.035 0.034 0.037 0.035 0.037 0.035 0.035 0.034 0.037 0.035 0.036 0.037 0.035 0.036 0.037 0.035 0.036 0.037 0.036 0.035 0.038 0.037 0.036 0.036 0.035 0.036 0.037 0.036 0.036 0.035 0.036 0.037 0.036 0.035 0.036 0.037 0.036 0.035 0.037 0.036 0.	0.05	0.024	0.027	0.034	0.029	0.034	0.031	0.035	0.034	0.035	0.032	0.035	0.032	0.035	0.034	0.037
0.2 0.032 0.035 0.036 0.034 0.036 0.037 0.036 0.036 0.037 0.036 0.035 0	0.1	0.03	0.033	0.033	0.035	0.033	0.035	0.037	0.035	0.035	0.035	0.034	0.037	0.035	0.034	0.038
0.3 0.032 0.035 0.036 0.036 0.034 0.035 0.036 0.037 0.034 0.033 0.036 0.035 0.038 0.037 0.5 0.033 0.035 0.035 0.035 0.036 0.032 0.037 0.035 0.036 0.035 0.038 0.037	0.2	0.032	0.035	0.036	0.034	0.036	0.037	0.035	0.036	0.036	0.036	0.037	0.036	0.035	0.035	0.037
0.5 0.033 0.035 0.035 0.035 0.035 0.036 0.032 0.037 0.035 0.035 0.036 0.035 0.034 0.037 0.035	0.3	0.032	0.035	0.036	0.035	0.036	0.034	0.035	0.036	0.037	0.034	0.033	0.036	0.035	0.038	0.037
	0.5	0.033	0.035	0.035	0.035	0.035	0.036	0.032	0.037	0.035	0.035	0.036	0.035	0.034	0.037	0.037

Type I error rate rho, using kappa (threshold = 0.65) base rate inflation

100 200 250 300 350 440 450 550 660 655 700 755 800 850 900 0.011 0.028 0.015 0.028 0.015 0.025 0.026 0.021 0.027 0.031 0.032 0.032 0.050 0.024 0.027 0.034 0.029 0.034 0.035 </th <th></th>																
0.010.0280.0150.020.0280.0180.0310.0250.030.0290.0280.0310.0270.0310.0320.0320.050.0240.0270.0340.0290.0340.0310.0350.0340.0350.0320.0350.0320.0350.0340.0370.0370.0370.0370.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0350.0360.0350.0360.0370.0350.0360.0350.0360.0370.0360.0350.0360.0370.0360.0350.0360.0370.0360.0350.0360.0370.0360.0360.0350.0360.0370.0360.0360.0350.0360.0370.0360.0360.0350.0360.0370.0360.0350.0360.0370.0360.0350.0360.0370.0360.0360.0360.0350.0360.0370.0360.0350.0360.0370.0360.0350.0360.0370.0360.0350.0360.0370.0360.0350.0360.0370.0360.0360.0350.0360.0370.036 <th></th> <th>20</th> <th>25</th> <th>30</th> <th>35</th> <th>40</th> <th>45</th> <th>50</th> <th>55</th> <th>60</th> <th>65</th> <th>70</th> <th>75</th> <th>80</th> <th>85</th> <th>90</th>		20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
0.050.0240.0270.0340.0290.0340.0310.0350.0340.0350.0320.0350.0320.0350.0350.0340.0370.10.030.0330.0330.0350.0330.0350.0370.0350.0350.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0340.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0350.0360.0370.0360.0370.0360.0360.0350.0360.0370.036 <th>0.01</th> <th>0.028</th> <th>0.015</th> <th>0.02</th> <th>0.028</th> <th>0.018</th> <th>0.031</th> <th>0.025</th> <th>0.03</th> <th>0.029</th> <th>0.028</th> <th>0.031</th> <th>0.027</th> <th>0.031</th> <th>0.032</th> <th>0.032</th>	0.01	0.028	0.015	0.02	0.028	0.018	0.031	0.025	0.03	0.029	0.028	0.031	0.027	0.031	0.032	0.032
0.1 0.03 0.033 0.035 0.033 0.035 0.037 0.035 0.035 0.034 0.037 0.035 0.038 0.2 0.032 0.035 0.036 0.034 0.036 0.037 0.035 0.036 0.037 0.035 0.037 0.036 0.037 0.035 0.037 0.036 0.037 0.035 0.037 0.036 0.035 0.035 0.038 0.037 0.037 0.036 0.035 0.036 0.037 0.036 0.035 0.036 0.037 0.036 0.035 0.036 0.037 0.036 0.035 0.036 0.037 0.037<	0.05	0.024	0.027	0.034	0.029	0.034	0.031	0.035	0.034	0.035	0.032	0.035	0.032	0.035	0.034	0.037
0.2 0.032 0.035 0.036 0.034 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.037 0.036 0.035 0.035 0.037 0.3 0.032 0.035 0.036 0.035 0.036 0.036 0.037 0.036 0.037 0.036 0.035 0.035 0.037 0.3 0.035 0.035 0.035 0.036 0.032 0.037 0.036 0.037 0.036 0.035 0.035 0.037 0.036 0.037 0.036 0.035 0.035 0.038 0.037 0.5 0.033 0.035 0.035 0.035 0.035 0.035 0.035 0.037 0.035 0.036 0.035 0.035 0.037 0.035 0.036 0.035 0.035 0.037 0.035 0.036 0.035 0.035 0.037 0.035 0.036 0.035 0.037 0.035 0.036 0.035 0.037 0.037 0.035 0.036 0.035 0.037 0.037 0.035 0.036 0.035 0.037 0.037	0.1	0.03	0.033	0.033	0.035	0.033	0.035	0.037	0.035	0.035	0.035	0.034	0.037	0.035	0.034	0.038
0.3 0.032 0.035 0.036 0.036 0.035 0.036 0.037 0.034 0.033 0.036 0.035 0.038 0.037 0.5 0.033 0.035 0.035 0.035 0.036 0.037 0.034 0.033 0.036 0.035 0.038 0.037 0.5 0.033 0.035 0.035 0.035 0.036 0.035 0.036 0.037 0.035 0.036 0.035 0.037 0.035 0.036 0.035 0.037 0.035 0.036 0.035 0.037 0.035 0.036 0.035 0.037 0.035 0.036 0.035 0.037 0.035 0.036 0.035 0.037 0.037	0.2	0.032	0.035	0.036	0.034	0.036	0.037	0.035	0.036	0.036	0.036	0.037	0.036	0.035	0.035	0.037
0.5 0.033 0.035 0.035 0.035 0.036 0.032 0.037 0.035 0.036 0.035 0.034 0.037 0.037	0.3	0.032	0.035	0.036	0.035	0.036	0.034	0.035	0.036	0.037	0.034	0.033	0.036	0.035	0.038	0.037
	0.5	0.033	0.035	0.035	0.035	0.035	0.036	0.032	0.037	0.035	0.035	0.036	0.035	0.034	0.037	0.037

Type II error rate rho, using kappa (threshold = 0.65) base rate inflation

	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
0.01	0.495	0.54	0.481	0.376	0.41	0.314	0.321	0.284	0.268	0.267	0.234	0.24	0.215	0.217	0.198
0.05	0.525	0.459	0.389	0.372	0.33	0.307	0.291	0.271	0.261	0.247	0.234	0.224	0.206	0.206	0.198
0.1	0.488	0.435	0.385	0.346	0.321	0.296	0.273	0.257	0.246	0.237	0.224	0.21	0.202	0.192	0.188
0.2	0.481	0.402	0.363	0.339	0.311	0.282	0.263	0.249	0.239	0.227	0.212	0.2	0.195	0.187	0.181
0.3	0.471	0.409	0.368	0.335	0.304	0.282	0.266	0.255	0.238	0.23	0.217	0.213	0.201	0.19	0.19
0.5	0.483	0.412	0.365	0.337	0.312	0.289	0.269	0.252	0.238	0.223	0.212	0.205	0.2	0.188	0.184

Type I error rate rho, using kappa (threshold = 0.65) base rate inflation

	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
0.01	0.028	0.015	0.02	0.028	0.018	0.031	0.025	0.03	0.029	0.028	0.031	0.027	0.031	0.032	0.032
0.05	0.024	0.027	0.034	0.029	0.034	0.031	0.035	0.034	0.035	0.032	0.035	0.032	0.035	0.034	0.037
0.1	0.03	0.033	0.033	0.035	0.033	0.035	0.037	0.035	0.035	0.035	0.034	0.037	0.035	0.034	0.038
0.2	0.032	0.035	0.036	0.034	0.036	0.037	0.035	0.036	0.036	0.036	0.037	0.036	0.035	0.035	0.037
0.3	0.032	0.035	0.036	0.035	0.036	0.034	0.035	0.036	0.037	0.034	0.033	0.036	0.035	0.038	0.037
0.5	0.033	0.035	0.035	0.035	0.035	0.036	0.032	0.037	0.035	0.035	0.036	0.035	0.034	0.037	0.037

Type II error rate rho, using kappa (threshold = 0.65) base rate inflation

	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
0.01	0.495	0.54	0.481	0.376	0.41	0.314	0.321	0.284	0.268	0.267	0.234	0.24	0.215	0.217	0.198
0.05	0.525	0.459	0.389	0.372	0.33	0.307	0.291	0.271	0.261	0.247	0.234	0.224	0.206	0.206	0.198
0.1	0.488	0.435	0.385	0.346	0.321	0.296	0.273	0.257	0.246	0.237	0.224	0.21	0.202	0.192	0.188
0.2	0.481	0.402	0.363	0.339	0.311	0.282	0.263	0.249	0.239	0.227	0.212	0.2	0.195	0.187	0.181
0.3	0.471	0.409	0.368	0.335	0.304	0.282	0.266	0.255	0.238	0.23	0.217	0.213	0.201	0.19	0.19
0.5	0.483	0.412	0.365	0.337	0.312	0.289	0.269	0.252	0.238	0.223	0.212	0.205	0.2	0.188	0.184

Type I error rate rho, using kappa (threshold = 0.9) base rate inflation

	20	40	80	160	200	400	600	800
0.01	0	0	0.0421	0.0381	0.037	0.0392	0.0461	0.0432
0.05	0	0.00655	0.0394	0.0415	0.0409	0.0428	0.0389	0.044
0.1	0	0.0356	0.0453	0.0441	0.0441	0.0446	0.0451	0.0436
0.2	0	0.0367	0.044	0.0417	0.0425	0.0432	0.0411	0.0444
0.3	0.000468	0.0398	0.0447	0.0403	0.0391	0.0464	0.0418	0.0417
0.5	0.00446	0.0425	0.0401	0.0417	0.0438	0.038	0.0429	0.0397

Type II error rate rho, using kappa (threshold = 0.9) base rate inflation

	20	40	80	160	200	400	600	800
0.01	1	1	0.479	0.324	0.323	0.262	0.251	0.204
0.05	1	0.899	0.345	0.224	0.204	0.16	0.163	0.123
0.1	1	0.439	0.277	0.171	0.129	0.0914	0.0855	0.0571
0.2	1	0.404	0.213	0.101	0.0865	0.0405	0.0336	0.0322
0.3	0.993	0.332	0.181	0.075	0.0766	0.0272	0.0209	0.0137
0.5	0.969	0.309	0.14	0.0727	0.0524	0.0253	0.00729	0.013

Type I error rate rho, using kappa (threshold = 0.9) base rate inflation

	20	40	80	160	200	400	600	800
0.01	0	0	0.0421	0.0381	0.037	0.0392	0.0461	0.0432
0.05	0	0.00655	0.0394	0.0415	0.0409	0.0428	0.0389	0.044
0.1	0	0.0356	0.0453	0.0441	0.0441	0.0446	0.0451	0.0436
0.2	0	0.0367	0.044	0.0417	0.0425	0.0432	0.0411	0.0444
0.3	0.000468	0.0398	0.0447	0.0403	0.0391	0.0464	0.0418	0.0417
0.5	0.00446	0.0425	0.0401	0.0417	0.0438	0.038	0.0429	0.0397
	20	40	Type II	error rate	rho, using l	kappa (thre	eshold = 0.9	9) base rat
0.04	20	40	80	100	200	400	600	800
0.01	1	1	0.479	0.324	0.323	0.262	0.251	0.204
0.05	1	0.899	0.345	0.224	0.204	0.16	0.163	0.123
0.1	1	0.439	0.277	0.171	0.129	0.0914	0.0855	0.0571
0.2	1	0.404	0.213	0.101	0.0865	0.0405	0.0336	0.0322
0.3	0.993	0.332	0.181	0.075	0.0766	0.0272	0.0209	0.0137
0.5								

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose.

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose. Segmentation: how you divide your data into meaningful parts

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose. Segmentation: how you divide your data into meaningful parts

How have you segmented your data?

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose. Modeling:

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose. Modeling:

Draw Represent Circle

The large circle in the drawing represents a spot that is magnified many times, so you

can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose. Modeling:

Draw Represent Circle Model

The large circle in the drawing represents a spot that is magnified many times, so you

can see it up close.

Create a model of what you would see if you could focus on one tiny spot in the area between the jar and your nose.

What is this about?

Modeling:

Draw Represent Circle Model

Imagine – create a mental representation? hypothesize? thought experiment?

Modeling:

The large circle in the drawing represents a spot that is magnified many times, so you can see it up close.

Let's sit in a circle.

Circle

5-minute break

Hydration, snack, chatting, etc.
ncoder

https://app.n-coder.org/

https://go.wisc.edu/0nxl70

When have I coded enough?

Human Rater 1

Human Rater 2

Workshop 2A: Introduction to nCoder An Applied Example

Seung B. Lee Pepperdine University

Introduction

The International Community for Collaborative Content Creation (IC4)

- Examines cross-boundary online collaboration of students in informal STEM learning
- Students aged 12-17 from **six countries** across four continents develop digital media artifacts (videos, presentations) about STEM subjects
- Communicate synchronously through online global meet-ups (video conference calls) and asynchronously (email, Slack)

Data & Analysis

- The largest portion of our data consists of meet-up transcripts which we have mainly analyzed through **hand coding** (20+ constructs)
- But... there is a lot of data (on avg. 1-3 meet-ups each week, each about 1 hr)
- Our approach to automated coding:
 - Utilize data that have already been coded (preclassified data)
 - Pilot test on two codes: social disposition, inclusive disposition

Process

Results (after one cycle)

- Training stage
 - Inclusive disposition: 7th iteration (kappa = 0.72; rho = 0.0038)
 - Social disposition: 4th iteration (kappa = 0.82; rho = 0)
- Validation stage
 - Inclusive disposition: kappa = 0.41; rho = 1 (Overfitting)
 - Social disposition: kappa = 0.73; rho = 0.02
- Testing stage
 - Social disposition (40 lines, baserate-inflated to 0.2)
 - Computer vs. Human 1: kappa = 0.81; rho = 0.04
 - Computer vs. Human 2: kappa = 0.88; rho = 0.01
 - Human 1 vs. Human 2: kappa = 0.94; rho = 0.001

Use of Preclassified Data in Automated Coding

<u>Advantages</u>

- Greater familiarity of the data
 - Completed initial process of identifying, defining and applying the codes
 - Common understanding between human raters: Concept validity
- Can increase efficiency in certain contexts
 - When coded data already exists
 - Researchers can refine regular expressions without additional coding
 - Helpful for deriving regex lists for more complex codes
 - o If multiple codes used, training set can be used for automating multiple codes

Use of Preclassified Data in Automated Coding

Limitations

- Need to consider size of full data set
 - Not efficient for data sets that are smaller
- Possibility of regex list overfitting the training set
- Question of whether some codes can ultimately be automated
 - When should the iterative loop be stopped? Need to consider complexity of individual codes

Questions?

Email us at: info@ic4.site seung.lee@pepperdine.edu

This project, supporting students who collaborate in digital makerspaces in five continents, is funded by the Advancing Informal STEM Learning (AISL) program of the US National Science Foundation (NSF) Award #1612824.

ncoder

https://app.n-coder.org/

Amanda Siebert-EvenstoneSeung B. LeeBrendan Eaganalevenstone@wisc.eduseung.lee@pepperdine.edubeagan@wisc.edu